sthenurus balleyi sp. NOV., A NEW FOSSIL KANGAROO FROM THE PLEISTOCENE OF SOUTHERN AUSTRALIA

by Gavin J. Prideaux* \& Roderick T. Well.s*

Abstract

Summary Pridenux, G. J. \& Wblıs, R T. (1998) Shonurus hairyi sp. nov., a new fossil kanearoe from the Pleistorene of southern Australia. Trums. R. Soc. S. Aus, 122 (1), 1-15, 29) May. 1998. Shlemuras hoiluys sp. nov, is deseribed from Pleistocene deposits of Eyre Peninsula and the southeast of South Australia. The dentary is similar in sige and norphology to S. ocidentalis Glauert, 191 () but the cranium is much less inflated across the fromtals und the rostrum less tapared anteriorly. Silhemurns bolley is characterised by very low crowned motars most simiar to S. cetsal Pledge. 1992. S. brachyselenis Prideax \& Wells. 1997 and S. anciquus Bartholomaí, 1963. Upper ;od lower premolars are similar to S. antüut and S. brownei Merrilecs, 1067. Overall.S. badey appears most closely retated to S. antiguts and may represent the most plesiomorphic member of the linage eontaning the more brachycephatic sthenurine species.

 Victoria Fussil Cave, Naractonte. Brothers Tslands, Eyre Peninsula, Pleistocenc.

Introduction

Following ils discovery in 1969 , the extensive Pleistocene deposit withio Viotoria Fossil Cave at Naracoorte. South Australia has yielded remains from around one hundred vertebrate species. Included are slightly less than half of the known Pleistocene species of sthenurine kangaroos (subtamily Stheaurinact: Procoptodom raphu Owen, 1874, Sthenurus andersomi Marcus, 1962. 5. brownei Merrilees, 1967, S. gilli Mervilees, 1965, S. maddocki Wells \& Murray, 1979, S. accidentalis Glatert, 1910.S. pales DeVis, 1895 (Wells ot al. 1984), and a new sthemurine, S baileyi sp. nov The species is also known from a single specimen collected from an eroded cave on one of the Brothers Islands in Coftin Bay, Eyre Peninsula (Brown 1908: Fig. 1). Williams (1980) identified the cramium and associared dentaries as bithenwus of. macklochi, but it is here designated us the holotype of S. haikey sp . nov. Deseription of the new species and is consideration of its phylogenelic implications form the sobject of this paper:

Materials and Methods

The material is housed in the South Australian Museum, Adelade (prefix SAMA) and Flinders University (prefix FU). Dental homology follows Flower (1867) and Lacketi (1993). Dental nomenclature follows Tedford \& Woodburne (1987). Ride (1993) or is statidard. Mensuration follows

[^0]

Fig. T. Map of sutheastern Australia showing location of deposits yielding Shwnurus bailoyi sp. now.

Tedford (1960) and Wells \& Murray (1979). Dental measurements (mm) are provided in Table 1.

Systematics
Order Diprotodontia Owen, 1866
Suborder Phalangerida Aplin \& Areher, 1987
Superfannily Macropodoidea (Gray. 1821)
Fumily Macropodidae Gray. 1821
Subtamily Sthenurinae (Glatuert, 1926)
Genus Sthenurus Owen, 1874
Subgenus: Simosthenuris Tedford, 1966
Sthenurus (?Simosthenurus) baileyi sp. nov. (FIGS 1-8)

Holotype : SAMA P13670, partial cranium (with 113, SP^{2}, dP3, M1-4, exclavited P3; Fig, 2A, B, 3A, 4A,

Tinı.f 1. Check tonth dimensions of Sthenurus baileyi. S. brachyselenis. S. brownei (eastern form) S. cegsat and S antiquas. metar, stondard deviation (parmaheses), range (brackets).
Abhreviations: $I=$ length. $A W=$ width of anterior $\operatorname{loph}(i d) ; \mathrm{PW}=$ width of posterior loph(id); AH = crown height of anterior loph(id) on buccial side: PH = crown height of posterior loph(id) on buceal side; $n=$ sample size. Note that crown heights are beavily dependent on degree of enamel wear. hence, lrequently high standard deviations.

Tioult	Species	L	AW	PW	All	PII	11
[PPER DENTITION							
dP2	S. baileyi	10.5	7.5	10.0	6.2	6.1	1
	S. bailey TYPE	As above					
	S. broumei (eashern lorm)	$\begin{aligned} & 10.9(0.4 .3) \\ & {[10.4-11.9]} \end{aligned}$	$\begin{aligned} & 8.7(0.40) \\ & 18.1-9.5] \end{aligned}$	$\begin{aligned} & 10,8(01,38) \\ & {[10.4-11.4]} \end{aligned}$	$\begin{aligned} & 7.0(0.51) \\ & \|6.0-8.0\| \end{aligned}$	$\begin{aligned} & 7.9(0.60) \\ & \|6.6-8.7\| \end{aligned}$	15
A. regsali	-	-	-	-	-	-	
		-	-	-	-	-	-
IP.3	S. bailey	10.6	9.9	111.8	-	-	1
	S. builey TYPE	Af aluove					
	S. bumbris (caciern larmi	$\begin{aligned} & 11.3(0.29) \\ & 110.6-11.71 \end{aligned}$	$\begin{aligned} & 10.7(0.32) \\ & \|10.2-11.3\| \end{aligned}$	$\begin{aligned} & 11.0(0.37) \\ & {[100.6-11.8]} \end{aligned}$	$\begin{aligned} & 5.7(10.54) \\ & \|+.8-6.4\| \end{aligned}$	$\begin{aligned} & 5.9(0.46) \\ & \|5.3-6.8\| \end{aligned}$	1.5
	S. ceessai	9.3	8.6	9.2	6.3	6.3	1
	S. ominjums	-		-	-	-	-
P. 3	S. tuilevi	$\begin{aligned} & 17.2(0,14) \\ & \|171 .-17, .3\| \end{aligned}$	$\begin{aligned} & 9.9(0.28) \\ & 19.7-10.1 \mid \end{aligned}$	$\begin{aligned} & 12.9(0.21) \\ & \mid 12.71 .3 .0] \end{aligned}$	$\begin{aligned} & 9.8(0.281 \\ & {[9.6=10.0]} \end{aligned}$	$\begin{aligned} & 9.7(1.06) \\ & 18.9-10.41 \end{aligned}$	2
	5. nallevi TYPE	17.1	10.1	1.3 .0	10.0)	10.4	
	5. tronemei (castern lomo)	$\begin{aligned} & 17.1(0.57) \\ & 116.2 \cdot 18.0 \mid \end{aligned}$	$\begin{array}{ll} 10.9 & (0.68) \\ 19.0 & 11.81 \end{array}$	$\begin{aligned} & 13.7(0.81) \\ & \|12.1-15.0\| \end{aligned}$	$\begin{aligned} & 9.8(0.76) \\ & 18.3-11.1 \mid \end{aligned}$	$\begin{aligned} & 9.7(0.78) \\ & 18.6-11.31 \end{aligned}$	21
	S. regsai	-		-	-	-	-
	S. cimigumos	17.9	4.3	11.3	8.4	10.1	1
M1	S. balkevi	$\begin{aligned} & 12.3(0.1411 \\ & {[12.2-12.41} \end{aligned}$	$\begin{aligned} & 12.3(0.21) \\ & {[12.112 .4]} \end{aligned}$	$\begin{aligned} & 12.4 .111 .21\} \\ & 112.1 .12 .41 \end{aligned}$	$\begin{aligned} & 6.9(0.07) \\ & \|6.2-6.3\| \end{aligned}$	$\begin{aligned} & 6.61(0 .+2) \\ & {[6.3-6.9]} \end{aligned}$	2
	S. builey TYPE	12.2	12.1	12.1	6.2	6.3	
	(easism firm)	$\begin{aligned} & 12.9(0.4 .3) \\ & \|12.2-13.6\| \end{aligned}$	$\begin{aligned} & 12 .+10.40) \\ & 111.6-13.0 \mid \end{aligned}$	$\begin{aligned} & 12.3(0.34) \\ & \|11.8-13.1\| \end{aligned}$	$\begin{aligned} & 6.1(0.76) \\ & \Gamma 5.0 .7 .9] \end{aligned}$	$\begin{aligned} & 6.5(0.62) \\ & \|5.3-8.1\| \end{aligned}$	28
	S. cegreni	-	-	-	-	-	
	S. sminigems	12.4	12.0	12.1	-	-	1
N12	S. Baileyd	$\begin{aligned} & 13.8(0.21\} \\ & {[13.6=13.9} \end{aligned}$	$\begin{aligned} & 1.3 .2(16.21) \\ & {[13.0-13.3 \mid} \end{aligned}$	$\begin{aligned} & 13.1(0.141 \\ & 113.0-13.21 \end{aligned}$	$\begin{aligned} & 6.9(1) .42) \\ & (6.6-7.2 \mid \end{aligned}$	$\begin{gathered} 7.2(0.35) \\ \|6.9-7.4\| \end{gathered}$	2
	.5. Puileri 'I'l'E.	13.6	13.3	13.0	7.2	7.4	
	S. Dronemi (cesstern liomm	$\begin{aligned} & 14.1(0.37) \\ & 113.2-14.71 \end{aligned}$	$\begin{aligned} & 13.6(0.46) \\ & \|12.9-1+4.4\| \end{aligned}$	$\begin{aligned} & 13.1(0.43) \\ & \|12.5-14.3\| \end{aligned}$	$\begin{gathered} 6.6(0.70) \\ 15.3-7.8 \mid \end{gathered}$	$\begin{aligned} & 0.9(0.58) \\ & 15.8 .8 .01 \end{aligned}$	23
	S. cegani	-	-	-	-	5.6	1
	S. atrizpus	$\begin{aligned} & 14.9(0.07) \\ & 114.8-14.9 \mid \end{aligned}$	$\begin{aligned} & 13.4(0.14 \mid \\ & 113.3 .13 .5 \mid \end{aligned}$	$\begin{aligned} & 13.0(0.21\} \\ & {[12.8-13.1 \mid} \end{aligned}$	$\begin{aligned} & 7.2(1.13) \\ & \|6.4-8.0\| \end{aligned}$	$\begin{aligned} & 7.4(1.34) \\ & 16.4 .8 .3] \end{aligned}$	2
M ${ }^{3}$	S. maikyi	$\begin{gathered} 1+.5(0.00) \\ \|14.5\| \end{gathered}$	$\begin{aligned} & 13.7(0.21) \\ & \mid 13.5 \cdot 13.8] \end{aligned}$	$\begin{aligned} & 12.6(0.35) \\ & {[12.8-13.31} \end{aligned}$	$\begin{aligned} & 7.0(0.14) \\ & \mid 6.9-7.1] \end{aligned}$	$\begin{aligned} & 6.8(0.28) \\ & {[6.6-7.0]} \end{aligned}$	2
	S. bailevi TYPE.	14.5	13.5	12.8	7.1	6.6	
	S. brownel (erstent form)	$\begin{gathered} 14.5(0.39) \\ \|13,7.15 .5\| \end{gathered}$	$\begin{aligned} & 1+.010 .501 \\ & \|1.3 .3-14.8\| \end{aligned}$	$\begin{aligned} & 12.9(0.54) \\ & {[12.3-14.5 \mid} \end{aligned}$	$\begin{aligned} & 6.710 .621 \\ & 15.4-8.11 \end{aligned}$	$\begin{aligned} & 7.0(0.5 .3) \\ & \|5.9-8.1\| \end{aligned}$	$1{ }^{14}$
	S. expseri	$\begin{array}{r} 1.3 .1(0.07) \\ 113.01-1.3 .11 \end{array}$	115	$\begin{aligned} & 10.9(0) 14) \\ & {[10.8-11.0]} \end{aligned}$	$\begin{gathered} 5.7(0.60) \\ {[5.4]} \end{gathered}$	$\begin{aligned} & 5.5(0.14) \\ & {[5.4 \cdot 5.61} \end{aligned}$	2
	S. antiguts	$\begin{aligned} & 16.0(0.35) \\ & 115.7 .16 .21 \end{aligned}$	$\begin{aligned} & 13.6(0.49) \\ & 113.2 .3 .3 .91 \end{aligned}$	$\begin{aligned} & 12.9(0.85) \\ & {[12.3-13.5]} \end{aligned}$	$\begin{aligned} & 8.5(0.3 .5 \mid \\ & \|8.0-8.5\| \end{aligned}$	$\begin{gathered} \mathrm{x} .3(0.007 \\ \mid 8.5] \end{gathered}$	2
M	5 traky	13.8	13.4	11.3	6.7	6.1	1
	S builevi 'TY'I\%	As above					
	5. bтнн\%еі (c:astem foran)	$\begin{aligned} & 14.0(0.43) \\ & 113.2-14.5 \mid \end{aligned}$	$\begin{aligned} & 12.2(11.48) \\ & {[11.2-1.3 .0 \mid} \end{aligned}$	$\begin{aligned} & 11.2(0.4(0) \\ & 110.0-12.07 \end{aligned}$	$\begin{aligned} & \text { S. } 1(0.62) \\ & (7.8-9.61 \end{aligned}$	$\begin{aligned} & 7.4(0) 78) \\ & \mid(1.5-8.8 \mid \end{aligned}$	16
	S. costati	12.2	11.0	9.5	55	5.1	1
	S. nmigmas	-	*	-	-	-	

TABLE I. - Continued

5A) left and right denaries (with il, dp2. dp3, ml-- excavated p3: Fig. 3B, 4B, SC, D), apparently collected from a bone brececia in an croded cave on the western end of west Brothers Islanal ($3+35^{\prime} \mathrm{S}$, 135^{\prime} 20' E), Coltin Bay, Eyre Peninsula South Australta (Brown 1908; Williams 1980: Fiy 1). Other mammak from the deposit inelude Macompas rufoncisems. Potmonus plavsops, Psendesctwinus sp., Ramus fiseipes and Nerphoces simerea. A lauge bird demur previously atributed to Geveyortio atwomi (Rich 1979) belongs to Dromeits onvasho) Nandiees (J, MeNamara pers, certur, 1996). Age of type locably is considered Pleistocene because all taxa idemified to spesies are only known from the Quaternary. Simblarly, the gentes Sitheumes appears noi to have ixisted anywhere beyond the late Peistocene Defails of colfection are truectain but prohatly retrieved by D. R. (jeorge around 1902 (I MeNatrata perin eamm. 1496).

Dezgitacis

Craturuin similar in size to strieturas oftatentalis hut rontals less expanded. rasimbm shorter and broader. with wider milals and lager nambil apertuft. P3 similar 108 . prowne but with relanively marrow: shallow longitudinal basin and rwa decestery cospables anterior la promment posterducesal accensory cusp. Upper molars very low crowned. with short preeingulun, weak posipromerista and sery well developed postparactista. Dentary simmitar in sige und mopphology to S. aridernatis and S. willurtes Battholomati. 1963 but with more posteriorly inflated plerygoid fosse than in any Shltemmas species. Posteroventral botder of nrabseteric lonsa oxpanded lateraily inno wide shelf, similar to S. iegseie, S. gitli ind S. Meddenht, il inlernediate belween-S. actedentalis ansl S. brewner in general shape and degree of procumbency. p ${ }^{7}$ neest simitar it norphology to S. antirfues but lower corowned, with straggter lingual crest. Lawer notars. very low crowned, with unteroposterionly from rigonid, well-developed premetactistid, and vers peduced eristid oblegua and paracristid producuse at morptrelugy closest in S irgseia S anriques and S. brachyselenis Prideaux \& Wells. 1997 bus sader relative fo length.

Deserimion af holary?

Vegticat portion of premaxilat llared dorsally. provsdige elongate contach will thasals. Diastema shorl, unterint $1 / 5$ comprising premaxilla and posterion ${ }^{7 / 3}$ maxilla. Tncisive foramim long, fatrow. enterior border level with pesterior extreme of 13 alvectus (Fig. 3A). Rostrum shot, tapered anteriorly (Fig. 2A). Buccimator fossa on maxilla rather shatlow. amerionly, deeper posteriorly imterior to aygomatic atch. Masseteric procest well-formed, raiber narrow:
eroded off venurally on leit and mght sider. Nasals. very broad posterionly and, athough broken anteriody, elearly short. Nasotontal suture gently sinusoidal (Fig. 2A). Frontals moderately inflated anteriorly: supratorbital erests only slightly developed (Hig. 2A). Temporal crests moderately developed, not fulfy convergent upon sagittal suture, Latge infraorbital foramen posifioned anteroventral and mesial to lachrymal livamen, just below arbital centre. Palatal vacuities extend anteriorly to anterior extreme of MI (Fgg, 3A). Right latetal extremity of troken posipalatine bar level willo M4 imierloph valley.

Il srown rather long. moderately wide. will vertical occlosal surface facing poseriorly. 12 very small, splint-like, 1/isize of !! , B high crowned, but quite short interoposteriorly (Fig. 2B). Small anterolingual lobe evident on 13.
dP2 reminiscent of P^{2}, roonded in general outlineespecially lingoally, but mach storter retaive to widh (Fie. 4A). Buccal and lingual erests straght. except for buccal curvalure of linmual crest an posterior extremity. Antetior batsin smatl. qute deepr and separated from longedodesal hasion by low transverse ridgelet Posterior basin appears to have teed relatively large, approx, hatl size of Iomgiludinal basin.
AP3 sumptetely molarifurn and similar in general outhe for M1, hut differs by having lophs srientated ohligasly that perpendiculat to buccal and liogual sides of tooth (Fie. 4A). In addition, precingulam very slight terminating before reithing lingual extreme of tooth. E'remetacrista appears welldeveloped. Proroloph appears to have been very curved. convex anteriorly. No en:mel sexentations present it imterloph valley: very lows. barcly detectathe postprotocrista positioned just limgual of dE3 midline (Fig. 4A). Postmetheomulecrista curves dorsobuceally from metaconule to meet verical postmetactista. Sinall accessory erest positioned thestal tor postmetacrista, slight postlink centrally positioned on posterior meratoph face.
P3 rounded in oulline and lapered onterionly (Pig SA). Longitudinal hasin shallow. Buceal ereat bately exceding lingual crest in height. Anteriorly lingual crest begins to run parallel to buceal exest theil posterior $8 / 3$ of crest cutbes out himgually. Small anterion basio presenl and separated from Tongitudinal basin by ratusverse ridge descending: from anterior buceal cusp terminating adjacent to interior linguad cusp. Posteriot basin short welllormed and separated from longitudimal busim by low transverse ridge originating from postevor lingual rusp and orientated obliquely (slightly atterobucalty) to meet fow down on buccal eres, Main posterobuccal nccessory casp well-formed, nol quite ats high as posterior part of buecal erent. Three

 $\mathrm{pm}=$ promaxillit. $\mathrm{s}=$ supraorbital crest.

11g. 3. Sthethuras baikgi sp. nov. crmium and dentaries. A. Stereopair of holotype crantum (P13070) palatal view. B. Stereopair of holotype dentary ocelusal view. Scale bass $=10$ mm. Abbrevs it $=$ anterior rone of uscending ramus, $b=$ buccimator lossa of maxilla, $\mathrm{c}=$ mandibufar condyle, $\mathrm{i}=$ incisive foramana, $\mathrm{pb}=$ posteroventral border of nasseteric Fossa, $\mathrm{p} v=$ palatal vacuities.
small poorly separated aceessory ouspules positioned anterior lo matn accessory cusp (Fig. SA).

Upper molars very low crowned, with protoloph equal in width oo metaloph in MI-2, but wider in M3-4 (Fig. 4A). Precingulum short. buecal extreme temninating at distinc cuspule. representing either stylat cusp A or B. Slight crest (protrable paracristia) connects cuspule posteriorly to paracone. Tiwo to four slight vertical crenulations centrally located on precingulum. with most lingual probably iemmant preprotocrista (forelink). Postprotocristat weak, low akeending buccally across lace of protoloph into
interloph valley, unitiog with vertical crenulation directed posteriorly from mid-point on protoloph. Postparacrista strongly developed, forming buecal border of interfoph valley, meeling slight premetacrisit on anterior face of metaloph (Fig. 4A) Joterloph valley with few very tine to no enamel erenulations. Postmetaconulecrista sweeps across posterior face of metaloph terminating just posterior fo) end of postmetacrista. Two to three small distinct crenulations enclosed by postinetaconulecrista on metaloph postcrion face.

Dentary moderately pooportioned, except for

Fig. 4. Sthenurus baileyi sp, nov, cheek tooth rows. A. Stereopair of holotype (P13670) left upper cheek tooth row ocelusal view. B. Stereopair of holotype (P13670) right lower cheek looth row occlusal view. Scale bars $=5 \mathrm{~mm}$. Abbrevs: co $=$ cristid ohliqua, $\mathrm{pc}=$ precingulum, $\mathrm{pd}=$ paracristid, $\mathrm{ppc}=$ postparacrista, ppre $=$ postprotocrista, $\mathrm{t}=$ trigonid,

Fig 5. Sthenurus baileyi sp, nov, premolars. A. Stereopair of holotype (P13670) left P3 close-up ocelusal view. B. Stereopait of paratype (FU01(07) left P3 occlusal view. C. Stereopair of holotype left p3 close-up occlusal view, D. Stereopair of holotype Jelt p3 ocelusal view. Scale harx $=5 \mathrm{~mm}$. Abbrevst ac $=$ accessory cuspules, be $=$ buccal crest, $\mathrm{lb}=$ longitudinal basin. lc $=$ lingual crest, me $=$ main crest, mv $=$ median valley. pbac $=$ posterobuccal accessory cusp.
posteciorly intlated pterygoid fossa and lateral expansion of postereventral border of masseteric fossa into wide shelf, Ramus modecately deep for width, parlicilarly in region of symphysis. Symphysis gently tapered anteriorly and posterionly only extended short way beneath gemial pit below atheriot root of dp? Digastric eminence present but not pantictarly prominent, Digastric sulcus. extending from beloy anterion extreme of pterygoid fossa to below m2 hypolophid. Diastenta short, with median dorsal groove deep. relatively wide. Very shallow buccinator suleus arises near posterion extene of diastema, dorsal to large anterior mental foraven. Buecinator suleus deepens stighty posteriorly, lerminates below ml hypolophid Posterion nental foramen positioned bolow m2 hypolopthid, halli-way between dorsal and vental borders of rantes.
Anterior ront of ascending ramus begmo adfacend to $n 3$ hypolophid (Fig. 3B), extending posterindy to form huccal horder of postalveolar forsa. L'terygord fossa inflated posteriorly. projecting well beyond border of masseteric fossa when viewed laterally Masseteric fossa deep. duc liageely to laturally expanded posteroventral border (Fig. 3B), Veniral border of nasseteric fossa at same horinootal levet as posterion region of buccinator sulcus. Musseteric lofamen moderately large. yertical in oficotation. Inferior mandibular foramen rither strill. Al anterior extereme of pterygoid fossia-antermmedial to interion mandibular formmen, dursoventrally wade moylohyond groave present. This appeares to haiven teear partially overhang by shate antegrodorsallydirected process al antermmedial border of pterygod Cossat, ind similarly-shaped posteroventrallydireeted process positioned below posteriose bxtreme of postaveodar fossia. Mandibular condyle moderately lage (Fig. 3B). Angular procesc welldeveloped. rising dorsitly 10 acate puinl.
il rather short, slender uptorned with orxlusal surface al at hotienital level just above base of eheck teeth crawns. Lpe in both sides of holotype 1 bo warn or fragmentary to interpres. Likewise, If ${ }^{3}$ very worn, allhough ctearly molariform, possessing bow but well-defined pari- premeta- prehypo- and preentu-crisudas.
p3 consideratbly longer than any molar with main (bigual) erest extending trom posterelingual yoner is midline off tocth anteciorly (Fig. SC.D). Three cuspules form anterior part of main crest. With each bearing pair of lateral ridgelets, one deseending buccally, one lingually. Buccal ridgelets lemmpate at lsim shelf formed by three conlluent cuspules. Iosated immediately anterios to buccal crest. Buccal cest statight short, equal in length to and mirroring whape of pestetier patt of main erest. Median valley rather natow moderaely deep. Thward is pesterisi
$1 / 3$, median valley traversed by coarse ridgelet (Fig. SC.D).

Lower molars very low erowned, with protolophid and hypolophid ocelusal sutlaces linear and close no parallel. Trigonid very shert, with paracristid low and composed of two moletics. Degree of separation of anterior and posterior moicties increasex from mil to mt . Posterior part of paracristid sweeps smonthly anterolingually aeross protolophid tace, temmates on buccal side of anterior part. In more posterios molars, anterior component of paracristid shifted more lingually but posterior extreme rembink within buceal $1 / \mathrm{a}$ of anterior protolophid face sugmating well below lophid apex. A feew tinc enamel crenulations arise low down on anterior face of protolophid and descend into trigond basins. Liogual side of trigonid bordered by well-ieveloped premetacristid. which termigates at paraconis. Precingulid small and posiunod anterobuccal is paracristid, estending lingualdy is very thin pentasola at interbor extreme of molar. Cristid obligut (prehypoerisid) low, similarty developed and aligned in similar pastion on hypotophtid is partacrisdd in protolophid. Preentostistid very low and barely detectable. Aside from these weakly developed crests. shallow interlophid valley bears no enamel cremulations. Pasterior face of bypetophtad with low shallow inflation.
Pararypes: From Vicloria Fossil Caxe, Aaraconrie South Australia (37 60^{\prime} S. 140'48 E). FU000.3_lett
 FE. SB): Eu0168, right p3; EU0294, partiat right deolary; SAMA P1653I/P16558. Teft and right adult dentaries (left dentary in Fig. 6A,B: P282R2 right juvenile dentary: P28659. fight M2. len M3. FU(00) 1 , 140167 and SAMA P28659 may belong 16 sathe individual based on proximity is deposit. degree of enamed weat and ocelusal his. Specimens collected by Prideaux. Wells and others. Age ol deposit is nedial to late Pleistocene (Wells é al. 1984: Ayliffe e eal. in press).
Features not preserved adequately in holurype ats described from partatype SAMA P2N282.
Up 2 equat in longth to dp3, yery simitar in murphology so p3 but wider relative ro lengith. As in pi. Hiree cuspules dominate anterior half as main eres. cach with transverse ridgelet on buceal wide Ridgelets likely to have teriminted in tiny cuspules like p3, bot due to considerable wear sustaned have become comfluent with butcal crest, conveying in inpression of morc etoneate crest.

Completely molariform. ap3 bears protolophad lapered more toward Iophid apex than hypotophid, As with dp 2 , wear has removed several fealures, However, crisuid obliqua uppears more smongly developed tham in molars and eurved directly fromi hypuconid apex into interlophid valley, ternamatine

Fig. 6. Sihenurus baileyi sp. nov. left dentary. A. Paratype (P16558) lateral view. B. Paratype (P16558) mesial view. Scale bars $=70 \mathrm{~mm}$. Abbrevs: $\mathrm{amf}=$ anterior mental foramen, $\mathrm{bs}=$ buccinator fossa. $\mathrm{d}=$ diastema, de $=$ digastric eminence, ds $=$ digastric sulcus, $i m f=$ inferior mandibular foramen, $m f=$ masseteric fossa, pmf $=$ posterior mental foramen, ptf $=$ pterygoid tossa, $s=$ symphysis.
eencrally on postenor protolophid face. Very weak precutocristid also present, curving from sotoconid poto interloptid palley. Ieminationg lingual to cristide obliqua. Enamel crenulations, similar to those on motars. appear to have heen present on anterior lophid faces. Slight, rounded posteingulid on posterion face of hypolophid appats confluens with slight postentercisitiu.

Etwotorgy

Named in honour of Mr Edwin "Ed" Bailey whose elforts over the last 25 years have contributed so much to the suctess of palateonologital work in the Narkoorte Caves:

vartartion

Unfortuately, voly one cranium is known of S, badevi sp now and variation within the supper deminion can soly be assessed by comparison of P3 and M1-3, which are each represented by two specmiens. P3 is very similar in the holotype and FU0167, with the slight occlusil wear in FU0167 responsible for most of the superficial differences between the specimens. In the holotype. P3 is Wightly wider anteriorly, both across the whole toxath and the longiudinal basin. The lingual surface of the hototype P3 is slighty more convex and rounded than FLOM167. The three cuspules anterior tot the main posternbuccal itecessory cusp are nore separated in FU0167.
Onfy one slight difference is detectable on compariton of M1-3 of P 13670 . FU0167 (MI) and P 28659 (M2-3). The posiparactista is larger in the holotype. While greater wear sustained by FU0167 and P25659 could iceoum for these differences. consuleration of the mamer in which teeth beclude suggests that they are more likely to reflest morphotogical vararinn.
Complete or partial denturies are known for live individuals, with three characters cleasly vaimable Depth and extent of the digastric suleus is the mest variable character Although deep and extending from the anlerior extrene of the pterygond lossa to below the m 2 hypoloptid in P13670 and Plos31/Plo558: the sulfens is much shallower and sinly extends to below the m 4 protulophid in Eforot. In P2 2882, the digastric sukus is even shallower, thus negating the diagnostic uritity of this chamater. The degree lo which the plerygend fossa is imflated posteriorly also varies belween specimens. Inflation is guvatest in PI6531/PIn558, silightly lest In the bolotype (P13670). FU0004 and P1K282, and least in FU0294. However, it is sufficient in the tater 10 park it us at disuinctive Feature of 'S Balleyt. Dentary depth relative to width is greater in P10S31/P16558 idepth to widith ratio below 162-3 = 1.791 chmpares in Fu0g04 (1.55) and P28282
(1.61). The ralios is lowest in the hololype (1.46). Intraspecific variation in dentary depth relative to width is commonly obseryed in sthenurine spectes known from even small sample sizes.
Varialion in $\mathrm{p} x$ size is common in all shenurines. including S. bailevi. While most of the paraty pes are very similar in size. P16530/P16551 and the holotype are noticeably shoter and narrower Morphology varies only shighlly belwoen individuals, primarily in the form of the buccal crest and minur variation in width of the medtan valleyThe unterior half of the buccal erest in P28282 is slighty bigher than the posterior half tund carves posterolingually, hecoming confluent with a transverse ridgetet which crosises the median yalley. This buecal crest morphology is not observed in any of the nther specimens, allhough a very similar transverse ridectet traverses the median valley in P13670. Apart from this fealure. only the relative Toflation of the anterior region of the p3 varies slightly. A p3 referrable ro S. bailevi is also known from Lindsty Hall Cave, near Madura on the Nullartor Plain, Westem Australia but this specine remuins in the private collection ol L Watcher Perth. This specimen is inseparable in size and moppology from the South Australian specimens.

There is little varration in both size and morpholegy of the lower molars, althengh the premetacristid patacristid and cristid obliqua of the paratypes are slightly more weakly developed than the holotype and the anrerior lophial faces bear more fiac enamel crenulations. In addion, the postcingulid is more shelf-like in each of the paratypos than in the holotype. except inf FLO294 Where there is a lagger inflation of the ventrobuctal region of the hypolophid posterior face.

Comparigm with wher maxu

Cranium. Although P3 wat unerupted in the holotype of δ. brilecyisp. nov., the presence of M4 in acelesinn indicates that P3 eroption was imminent, All examination of other species for which a mood age series is known, reveals that litle change in morptiology or size in most aspects of the chatum and dentary oceurs frem thit ontogenetie slage to the stage where P3 is erupted. This means that dired comparisoos with older representaives of other tava are lenable. It is worth noting that the two saniples al
 is compared come from Nataconte and are constdered to represent the easkent torms of both speciess Although very simitar io overall morphology. they can he distinguished from the toporypi- Wersem Australiau samples by their larger averall sive and stightly snaller dentition telative to law sive

The cranium of S. bairevi is very similar in size and brachycephaly to $\$$. ocodentalis. The premaxilae are also similar in relative size and morphology. Although rosiral length of the iwo species is similar, the buecinator fossa on the side of the maxilla is deeper in S. occidentalis. This is coupled with a mesially eoncave aspect to the edge of the diastema, in contrast to the less distimet edge and shallow buceinator fossa in S . bailevi. This condition is more reminiscent of S. gilli and S. andersoni.

The rostrum of S. bailey does not taper to the same degice anteriorly as S. occidendatis; both because the frontals ate less expanded and is narial aperture is proportionally Juger. Among the Stheturas species for which the splanchmocranium is known, lateral inflation of the frontal region (particolarls anteriorly) and formation of supraorbital crests is greatest in S. madtorki. S. ofidentalis. S stirlingi Wells \& Tedford. 1995 and S. hrownei. The fromal region is relalively narrow in S gilli, S. atedersoni and S, timedalei Tedford, 1966. The proportions displayed in S, builevi are intermediate belween these iwn groups. particularly between S. bromblei and S. gilli. However the masals of S. baikya are very wide and constitute a greater proportion of the dorsid aspect of the costrum than any other Sttenturus species. except S, maddreki. Overall, the short and broad nature of the rostrum in chatacteristic of S. ballevi.

The anterior extent of the palatal vacuities in S batry is akin to a number of other species. teminating close to the UP3 metatuph, or what would be close to the pesterior extreme of the P3 if it were in occlusion. The masseteric process apperss ti) have been well-devetoped, allowing for the damage in the holotype, and is intermediate between S. madefock and S. brownei in size.

Upper Dentition. In S haileyi sp. nov., the crown of If is slightly longer and boader that S , brownei add is most similar to S . oceidentalis. If is rot us high crowned as that of S gilli. and not as broad is in S. atndersome. S. arlas (Owen, 1838), S. tindalei or S. pales. The small, cylindrical 12 is intermediate in size between 5 . lonernei and 5 . accidenteliy. 13 is most stmitar in size athd general morphology to S . /honnei but the buceal surface is smooth and llat, nen heanney any vertically-orientated undulations. In this respecr. S. bailevi is similar to S. predentalisy and $\$$ S gilli.
Although slightly shofer and los inflated Lateratly
 elosest in onerati morphology to that speciet. Orientafion al the buceal and limgual erests is atso similar but the posterior basin appears of have been Harger in S. baileyi. P3 of S. haileyi is most remmiseone of S : hermati and S. enticques in morpholegy, particularly in the shape and oricntation
of the buccat and lingual cres 15 and the anterior basin (Fig. 7). However, s, baikey possesses a shallower and natrower longitudinal basin and a promment posterobuccal accessory cusp with two euspules anterior ω it (Fig. 7). The posterior basin is smaller than in either $\$$, antiquus or $\$$ brownei. Height of the lingaal erest in S. anticquis is considerably tower relative to the buccal crest than in either S. hrownei or S. baileyi. In addition, the S. antiquas P3 is also smaller relative to the size of the molars. The mount of wear that dP 3 has undergone has obliterated several characters useful for comparison. However, the tooth appears to bave been generally similar to that of S. brownet but with a smaller precingulum. larger premetacrista and many fewer and lines enamel crondations on the loph faces and interfoph valley:
The very low crowned nattire of the S berikyt upper molare is only approached among Sthenurus. by S. cegsai, S. antiquus and S. muddocki. Similar to S. eegsai and S. andiquus. there are few erenulations. on the Joph faces and the intertoph valley but the postprotocrista is more weakly developed in S. haileyi. The postparacristat is more strongly

 (posterslingual curner reconstricted - inconmpete in
 Satchars $=5$ mm Abhrevs: $4=$ anteriot, $1=$ libglal
developed in S baileyi than any other species. including S. brammei. The slight nature of the precingulum is similar to that of S. untiquas.

Dentary, In general morphology, the dentary of S. baileyi sp, nov. is most similar to S. occidentalis, S, antiques and S. gilli, and to the former two in size. The ramus differs from S. occidentalis in the following features: it is slightly narrower for its depth, the symphysis extends only just beneuth the genial pit, the il and symphysis are slightly more procumbeot. the diastema is slightly longer. the digastric sulcus is shallower and less extensive. the posteroventral border of the masseteric fossa is thore flared laterally and the pterygoid fossa is more inflated posieriorty. Sthenurus baileyi differs fioin S. antiquus in its longer cheek footh row relative to ramus depth. Morphology of the S. bailevi symphysis most resembles that of S. maddocki, where the symphysis tapers gently antertorly and onty extends slightly below the genial pit. However, unlike S . maddocki, the orientation of il elosely approximates that of the anteroventral border of the symphysis and in thes respeet is similar to S aridentalis and $\$$. brownei. Morphology of the il ctown and its degree of prooumbency are intermediate between S. orcidentalis and S. brownel. Relative to the lenglt of the ramus, the diastema of S. buileyi is proportionally longer tham that of S. accidentalis. S. brownei and S sill. It is most similar io length to S. madidurki but is nol convex dorsally as in this spectes. Depth and extent of the digasitric sulcun are similar to, but slightly more pronounced than in δ. maddocki. The degree of intraspecific variation in depiti and extent of the digastric sulcus also seems. similar between the Iwo species. Lateral expansion of the pusterovential border of the masseteric finsed into at wide shatf is simblar us S. cegsedi. S. Hith and S. meddecki. The prerygoid fossa is more inflated posistionly than any other Silrmeras species amol in thes respect, es hativy resemtiles Procoptodon.
Size and mophologey of dine most resembles that of 5 . Momate but is not as namow anterionly relative Io the pomeriou part wl the woin. The median valley in abo narrower. Supetticially, the dp 2 brucall etesl appears similar in length to that of S. Bmemer thul this
 ressulted is the erest becoming exstluest with the
 saze and morplestagy fo that of's becovere bal the

 menc Lansely resembles ilve of Si, aryibwales.
In mompliolegey soe selative to the motas smed roriembtion of the mairs und buceid caests the S

Fig, 8 Comparative sketehes of right p3 in secilosal view. A. Sthenurus bracliyselenis. B. S. antiquus. C. S. hailevi sp. nov. D) SH brewnei Scale bars $=5 \mathrm{~mm}$. Nbbrevs: $a=$ interior, $I=$ lingual.
dilfers by being smaller. lower crowned, slightly mote inflated anteriorly and having a straighter main crest arientated from the posterolingual on the anteroboceal comer of the both. In S. zuliquus. the posterior part of the main scest trends anterobuecally Then straightens anteriorly along the tooths smidlines. The S. bateve p3 shares with S. brachoselenix the major featores of the main erest and a ridgeled traversing the medtan valloy but is eassly dishinguished by ifs larger size, shigitly greater widfh relative to lengith (ratio (0.55 compared wilh 0,52) and Ionger. straighter buecal crest (Fige. 8). In sixa and genetal nutline the S. haileyi p.3 is also simitar lors. fromnei hut is lower emowned and hears al colsiderably shoter buecal crest.

III sue and erown height. The lower meshars off S. batevi 山e sumewhat simila to those of S mexem and
 bracheselems They differ from the latker in then Ereater width matave to length soation is \&t emmpardad with 0.72 , in the abterfor sigentom tor heing symmetrically lapered anterorly and the shetr-ilke inflation som the posteriog face of the hyputophad heimg much less promounced. In genued. h. Iquilervi is. bracheschemis. S. cegsati and S. dumumes have neluively smouth lophind laees. with only as lew line shamet sremulations-

Diseussion

Soferatus bafleyi ip. nov. retains a suire of cramodental characters that suggest a fiomy plesionorphic position within the genus. Althnagh the denosits tron which the species is known are Pleistocenc in age. Sa bailevi is most closely comparable with the Pliacene S, antiquas irom Chinchilla in somheastern Qucensland and S. bruchwselems. a species of uncertain age from Wellington Caves, easteru New South Wales. p. 3 is vely simitar to S. chtifulus bul considerably more derived than 5 . hrachyselentis, given its greater rebustness relative to the molars and longer. straighter buccal erest In S. brahoseleniss, p^{3} is quite itarrow and has a shom, ereseentic buceal erest restricted to its posterobitecad corner, features which are considered plesiomorphic for the genus (Prideaux \& Wells 1597). The lower molars are intemediate between S. hrachysetenis and S. cumiquas in gencral morphology, bot, unfortunately. ne) upper molars for the fopmer are known. However, the upper molars of S. heilleyi are very simitar to those of S . amiquas. Based on a comparison of single ipper molars. diese cwor species would be diffient to sepatate. However, P3 is motably more derived in S. hailovi, the lingual cingulum having become raised into a crest subequal in height with the buceal erest. It δ. cuntiqums it is markedly lower.
Although the only known erarnium is incomplete, \$. buiteyi can be eicarly distinguished from all species of Sthrmaqs for which the erantium is known. Whife exhobiting a similar degree of
 a shoter, beorder rostrom and a less inftated frontal region than any of the other brachyeephatic Pleistosenc species, Increased inflation of the Imontals appotars to have co-evolyed with increased sheek wouth complexity in the lineage for possibly lincages) leading to the more brachyocetratic thorter-taced) species. eg. S. brownei, S. arcitertater mand S. maderockf. The modest degree of fonnes inflation. relatisely simple Jow crowned (rulars and shor buceat crest ner joining the main thest amerionly on $\left[^{3}\right.$ promide a concetvable aurecodent morphology to dese other specerets
Uumonunaty only one ramus and one maxilla framenent of S. arriquase are known but given the dental similarities botween this species and δ bethow, the likelihend may be that these refleet onctall ctanial simitainics, Alfongly the denary at S vationus is incroupletc: ghe inportant diftrasose In the cramiunn of dis species and S, hatlert inay be indicaled by the Jonger cheek tooth row relative to
 ramparad with 1.85 (ar 5. hailevi). Thim suggeas : retativety langer densty and tharelote os mote
elongate cramiun than for S. bsale ${ }^{2}$. This feature, in conjunction with the slightly higher crowned molars. and more distinet ctissid obliqua and paracrisíd. may make S antiquas a possible structural precursor to the lineage that led to the mote dolichorephatic (Fonger-faced) Pleisfocene apectes. This contention is supported by the fact that the lingual crest of the S : antieutus P 3 is notably lower than the buecal erest, a feature shared by the more dolichocephalic species. In the more brachycephalic species the crests tend to be subequal in heigh. Since raising of the lingual cingulum into a crest is a synapomorphy for all sthemurines excluding the plesiomorphic late Miouetie Hadroushnas puckridgi Woodburne, 1967 (Fig. 9), a lower erest may be fegarded is at mote plesibmorphic condition
Despite the retiance on relarively linited Pliceenc materit. the siniturities between S. bailevi and S . antiquur imply a close relationship. They are more derived than S. cegsel and S. brachyseteris but more plesiomorphic than any described Pleistucene apecies. Features not shared with each other are either those shared with the more dolichocephatis species in the case of \&. antiquus. or with the more brachycephatie species in the case of S bailevi. If Tedford's (1966) subgeneric tgeneric sensu Flannery 1983) definitions hold (i.e. Simnsthenurus = brachyceptalic, low-erowned check teeth with low links and many coarse enamel crefulations. Sthenuriss sensu smicto $=$ dolichocephalic, highcrowned cheek teeth will strong links and few tine enamel crenulations), then 5 suntigans may represen the least denyed species in the subgenus sthemuras. while S baiferi may rulfil a similar position if Simenthenurus (Fig 2). Because s. nolabitia Bartholomiai, 1963, all apparently derived dolichocephatle spectes co-focers with S antiones in the Plincene Chinchitla sleposit, the diverecibe of the shorter- and longer-faed sthenurine groups mast have oceured much eather in the Plincence Similarty, very derived speeics co-öcur with 8 . buitert in the Pleistocene, but all that this demonstrates is thal S. antiguaty and S. paileyt ariatroletural prexursors of the dolictoceptatio and brachyceptatic Tinouges, rafher thato part of Urets ditectaricestry.
So given their verisimititede, are dhe diflerences between 9 . budeyi ind 5 . amtiguns sifficient is warram placement it diflesent subgencra!' White they doy nem possent miny of lice extrome character stames leaforad (1960 nused of deline the subgenera,
 Simmethompis and Sthemens s.a- ane nonghyletio. The validity of these tasa is currendy urden
 ruyisish, since the number of destribal blacnurime

Fig. 9. Passible plygham of haval relations in the Sthenurinae, based the the following sympomorphics. I. Cranimn relatively large, neuroctamim tlexed donally relalive to rostrum: occiput che to vertical. broat and deep with welldeveloped lambdoid cress: large palatal vacuities. narrow post-palatine bars; deep jugal expansion loming ectoglenoid process: laterally expanded wiprambital erests: ectotympanc thick, wide, cancellous and ventrally-keded; astending

 in occlusal vicw; thotar lophs reatively straght and close to paralled: lower molars with posterior tace of hypolophid
 yynphysis; mandibular ramus deep and wide, with depth at symphysis barcly shalkower than beneath molars: P3 with lingual cingulum raised imbo crest, separated lion buccal or main crest by longitudinal basin traversed by ridgelets: p. 3 with boceal cingulnm raised ints crest, 3. p3 with cured buccal crest neparated from main creat by wide median valley; p. 3 widened posteriorly: molars witl more fine enamel crenulations. 4 . p3 wider overall relative to length, with longer buceal erest: lower molars with cristid obliqua and paracristid shiticd more lingually. 5. Check tooth mow long relalive tu
 ramus depth; brichycephalic: retained lower crowned mobars, low cristicl obliqua and patacristid.
specien has roughly doubled since Tedford's (1966) revien. Almost cerainly. S. ceesui amd S. brachselemis have nos place whith the two sobgenera because they lack many of the delimiting character states and appear to be the eatiest derivatuons from the sthenurine lincage, postHadromomas packridui (Fig. 9). We awant the diseovery of forther Pliseenc species to contirm exaclly where S. cessal and S. brachasedrais fit within the sthenume radiation. As mare taxat become available more light will incvitably be thrown on this paramount phase in sthenurine diversification.

Acknowledgments

We thank N. lledge and J. MeNemara (South Australian Musenm). R. Molbar (Quecnctand Muscum) and R. Jones (Australian Museum) for the foam of specimens. L. Hatcher loaned the Wewtern Australiat specimen for comparison. J. McNamara is sincerely thanked for providing data on the lype locality, preparing the holotype and his chatacteristic. perspicacity when commenting on an carly datit of this paper. We are also geatelul to A. Longy and M. Archer for their constructive criticism of the mamuseript.

Referentes

 Moktomk. G E., Hellstrtm. J. C. Moriarty. K. C. \& W':t.s. R, 'I': (in prevs) son kat precipitation recurd fom sombleastern Austalia: evidence for interglacial relative aridily Gerologs.
Bkuwn. H. Y. L. (1908) Bone braccia ant roxk phomphate all Broblem I dand p. 343 /1: "Records ol the Mises of Sonth Amsmias, Aht edne" (Government P'inter, Adelaide).
 sublamily Sthenurinale (Marsapiala: Macropeodoidea) amd the relationships of the spectes ol Tropmoshon and /.ugoshophus. Aust. Methmal. 6. 15-28.
($198+$) Kiangaruos: 15 million yens of Australion hounders pp, Bl7-8.3s In Areher, At. \& Clathom, Ci. (Eats) "Virtibratce Forogeograplyy and Evolution in Austrialia" (ILeymerian. Perlh).
FI. w wik. W. H. (1867) Of the develamment and sucession ul ferth in the Marsupiala. Fhil. Jrams. K. Sot'. Jomel. B 157. $0.31 \cdot 6+1$.
1.nc*itt. W. Г. (1903) An (nthogenctic issessment of dental fanmolugies in therian mammals pp. 182-2104 m Sralaly. F.S. Nowneeh, M. J. \& Ackennai. M. C. (Lus) "Mammal Thylogeny ${ }^{\text {P }}$ (Spminger-Verlag, New York 1.
 species (Ma<roporidiae, Diprotodontia) Fiom Wellingon Coves and Bingara, New South Wates. Pron: Rimm. Sor. NSW 117. 181-196.

RKO. I. V. 11979) The Dmomombidac, an expmet tamily of larec ground birds endemic to Australia fine. Min. Res. Bull. 184. 1-196.
 genesis of the macropodiform motar. Nom. Ass. dasmales. Palacombols 15. 441-454.
TEDFORD, R. II (1906) A revich ul the mactopedid genten Shimumas. Vmi: Calif. Puh/. Cicul. Se\%. 57.1-72. de Woonsak vi, M. O. 119871 The Hariidate, a new family of vombationm mansmpials lionn Mioceme statat of South Aestralia and inn evaluation wi the homology of molan cusps in the Diprotodantia pp. 401 418 In Archer. M. (Ed.) "Possulus and Opostunts: Studiev in Evalufion" (Surrey Bealty de Soms, Sydncy).
Whles. R, T: \& MIRRAY, P. F. (1979) A new shemurine kangaroo (Marsapiala. Macropodidact from southenstern Someln Australia. Trums. R. Sir. S. Ams. 103. 213219
. Muriarty, k. \& Williash. D. L. Cr. (I4s4) The fossil vatchate deposits of Vienoria Fossil Cuve Naticoorte: an introducition to the gedogy and fathat. Was\% \%ool, 21, 3155-373.
WHIAARK. D. L. Gi. (1480) Catagus of Pleisiocene vertehrue fossils ind sites in Wouth Anstralia. 7 irms. R. Sere: S. Aus. 104, 101-115.

Appendia

 $=$ ()ucensland Musedum.

Spucies	Registration Number	Locality
S/hemums smitymas	QM F2931. 122973	Chinchillat, Darling Downs. Ohl
S. marlyswelenis	AM F31026	Wellington Caves, NSW
S. browned (wisklallorm)	S AMA P20483. FU 0202, FU 0271	Viecoria Fossil Cave, Naracumrle, SA
S. regeni	$\begin{aligned} & \text { SAMA P31800 } \\ & \text { (Hwhetpe) } \end{aligned}$	Corra Lym Coave. Cursamulkas. SA
	SAMA P16528. P16629. P20797. PU 0246	Victoria Forsil Coave, Namacoorte. SA
S. mationexi	SAMA P16627. Pl6643. Pl 6673	Vichoria Foscil Conve, Narscoorte. SA
S. ancerdentulis (citskern form)	SAMA P20798, 127799	
S. wreas	QM F292.i (holnype)	Darling Downs, Qld
S. pulus	SAMA P27797	Vetorial Fossil Cave, Naricomme, SA

[^0]: * School of Biologiad Sciences Fioders L/miversity of Soull Australia GPO Besx 2100) Adelaide इ Nusi 5(0)1, Email; Lavin.prideaus oflindersedtano

